Role of hypusinated eukaryotic translation initiation factor 5A in polyamine depletion-induced cytostasis.
نویسندگان
چکیده
We have earlier shown that alpha-methylated spermidine and spermine analogues rescue cells from polyamine depletion-induced growth inhibition and maintain pancreatic integrity under severe polyamine deprivation. However, because alpha-methylspermidine can serve as a precursor of hypusine, an integral part of functional eukaryotic translation initiation factor 5A required for cell proliferation, and because alpha, omega-bismethylspermine can be converted to methylspermidine, it is not entirely clear whether the restoration of cell growth is actually attributable to hypusine formed from these polyamine analogues. Here, we have used optically active isomers of methylated spermidine and spermine and show that polyamine depletion-induced acute cytostasis in cultured cells could be reversed by all the isomers of the methylpolyamines irrespective of whether they served or not as precursors of hypusine. In transgenic rats with activated polyamine catabolism, all the isomers similarly restored liver regeneration and reduced plasma alpha-amylase activity associated with induced pancreatitis. Under the above experimental conditions, the (S, S)- but not the (R, R)-isomer of bismethylspermine was converted to methylspermidine apparently through the action of spermine oxidase strongly preferring the (S, S)-isomer. Of the analogues, however, only (S)-methylspermidine sustained cell growth during prolonged (more than 1 week) inhibition of polyamine biosynthesis. It was also the only isomer efficiently converted to hypusine, indicating that deoxyhypusine synthase likewise possesses hidden stereospecificity. Taken together, the results show that growth inhibition in response to polyamine depletion involves two phases, an acute and a late hypusine-dependent phase.
منابع مشابه
Neuronal growth and survival mediated by eIF5A, a polyamine-modified translation initiation factor.
Eukaryotic translation initiation factor 5A (eIF5A), the only known protein containing the polyamine-derived amino acid hypusine, modulates protein synthesis. We show that neurotrophic and neuroprotective actions of nerve growth factor (NGF) are mediated by hypusinated eIF5A, which can account for the known roles of polyamines in cell growth and survival. NGF treatment of PC12 cells stimulates ...
متن کاملAcetylation regulates subcellular localization of eukaryotic translation initiation factor 5A (eIF5A).
Eukaryotic translation initiation factor 5A (eIF5A) is a protein subject to hypusination, which is essential for its function. eIF5A is also acetylated, but the role of that modification is unknown. Here, we report that acetylation regulates the subcellular localization of eIF5A. We identified PCAF as the major cellular acetyltransferase of eIF5A, and HDAC6 and SIRT2 as its major deacetylases. ...
متن کاملThe role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation.
Polyamines are essential cell constituents whose depletion results in growth cessation. Here we have investigated potential mechanisms of action of polyamines in supporting mammalian cell proliferation. We demonstrate that polyamines regulate translation both at the initiation and at the elongation steps. L-alpha-difluoromethylornithine treatment resulting in polyamine depletion reduces protein...
متن کاملHypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine.
Spermidine and its derivative, hypusinated eIF5A, are essential for the growth of Saccharomyces cerevisiae. Very low concentrations of spermidine (10(-8) M) are sufficient for the growth of S. cerevisiae polyamine auxotrophs (spe1Delta, spe2Delta, and spe3Delta). Under these conditions, even though the growth rate is near normal, the internal concentration of spermidine is <0.2% of the spermidi...
متن کاملCrystal structure of Arabidopsis translation initiation factor eIF-5A2.
The protein eukaryotic translation initiation factor 5A (eIF-5A) is a highly conserved eukaryotic translation initiation factor (eIF) found in eukaryotes and archaea.1–3 Biochemical and molecular studies revealed that eIF-5A is the sole protein that contains a modified amino acid residue hypusine (Ne-(4-amino-2-hydroxybutyl)lysine).4 The hypusination modification is made by two sequential react...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 48 شماره
صفحات -
تاریخ انتشار 2007